INTENTIONAL DESTRUCTIVE TESTING: A MEANS FOR ESTABLISHING MECHANICAL INTEGRITY

Chris Alexander  
Stress Engineering Services, Inc.  
Houston, Texas  
chris.alexander@stress.com

Brent Vyvial  
Stress Engineering Services, Inc.  
Houston, Texas  
brent.vyvial@stress.com

ABSTRACT

Pipeline operators have at their disposal multiple resources for evaluating the integrity of identified features and anomalies. With advances in in-line inspection technology, the pipeline industry is being called upon to evaluate an ever-increasing number of features. When a feature is identified as a threat and severe enough to warrant further investigation, operators are faced with sometimes significant costs, including those associated with excavation activities.

In this paper the authors provide guidance on the benefits associated with full-scale testing for evaluating mechanical integrity, referred to Intentional Destructive Testing (IDT). Unlike many assessment techniques that require the development and implementation of assumed operating and boundary conditions, well-designed IDT programs are able to replicate in situ conditions to provide operators with a clear understanding regarding the behavior of pipeline features and anomalies by simulating operating conditions and loading.

Three case studies are included in this paper to demonstrate the merits of the IDT approach including the assessment of dents subjected to cyclic pressures, burst testing vintage pipes having long seam weld crack-like features, and evaluating the reinforcement of girth welds using composite materials. In using IDT operators have improved confidence in predicting the behavior of identified features to ensure that maintenance resources are properly allocated for excavating and repairing anomalies.

INTRODUCTION

At the core of integrity management is the need to ensure the safe operation of pipeline systems. There are obviously numerous means for addressing the needs associated with this central requirement, several of which include studying historical trends and failure patterns, numerical modeling, and full-scale testing. From a statistical standpoint, as the age of a given pipeline increases the likelihood for deterioration of the system also increases. As a result, the importance of understanding the present and future behavior of an aging pipeline becomes even more critical.

In recent days the authors have observed an increased interest in pipeline operators requesting that full-scale testing be performed to predict future performance of pipeline materials and existing anomalies such as dents in welds, wrinkle bends, crack-like flaws in seam welds, pipe fittings such as wyes, elbows, and branch connections, and vintage girth welds. The central driver behind this trend is that operators need to assess the integrity of their pipeline system in a manner that cannot be achieved using an analysis-only (i.e. numerical modeling) approach. The consequence of failure for transmission pipelines is too high to risk the potential for errors and possible lack of conservatism associated with unknowns in a numerical model. In a similar manner, analyses methods that are overly-conservative will generate unnecessary remediation activities. This is likely to create other problems such as over-digging and not focusing on the major problems in a pipeline.

A well-organized and executed testing program can provide significant insights into the performance of a pipeline, both present and future. As part of this effort, readers are encouraged to consider the following benefits in pursuing testing as a means for evaluating mechanical integrity.

- It is possible to organize a testing program that represents future service conditions for a pipeline. As an example, one can apply pressure cycles to a given sample to represent 20 years of future service prior to performing a burst test on a known flaw. In this manner, the testing organization is able to provide the operator with a snapshot of how their pipe material might perform at some future date.
- Most analyses required some consideration of a range of input variables, typically involving material properties and behavior. Because of the potential for variability at the input level, one must bound analysis problems to ensure that both the upper and lower bound responses have been captured. This invariably leads to reduced confidence in results. If one is to integrate selected tests into a study of this type, the overall uncertainty of the analysis work is reduced and greater confidence in predicting the behavior of the pipe is achieved when using numerical models.
- Testing can also be used to validate numerical models and improve confidence in analysis results. Typically, several well-designed tests can accompany a wide range of numerical models.

The purpose of this paper is to provide guidance for the pipeline industry in how testing, primarily full-scale destructive testing, can enhance and improve integrity management efforts. The organization of this paper includes discussions on testing methods, types of testing, case studies based on prior work, integrating analysis and testing results, and lastly a discussion on guidance in using testing as part of an engineering-based integrity management program.
TYPES AND METHODS OF TESTING

In order to discuss the value in testing it is obviously important to consider types of testing and how they are used to evaluate pipeline performance. The sections that follow include discussions on the following types of tests:

- Burst tests
- Cyclic pressure testing
- Bend testing
- Simulated damage creation

Discussions include how the tests are performed (i.e. testing methods) and what is learned in performing each test. On occasion different tests are combined to better represent actual service conditions. An example is to subject a pipeline test sample to cyclic pressures for a specified number of cycles (e.g. number of cycles representing a 20 year service life) prior to performing a burst test. This in effect provides a snapshot of the future burst capacity of the pipeline corresponding to the designated future service period.

Burst Tests

As the name implies, burst tests involve taking a test sample all the way to failure due to pressure overload. The benefit in doing so is to determine the ultimate pressure capacity of a given piece of pipe. Of equal importance is to determine the reduction in strength associated with given defects such as a crack-like flaw in a seam weld or a plain dent with corrosion.

Prior to going to failure, it is often beneficial to perform pressure holds at levels corresponding to the operating pressure of the pipeline as well as the pressure associated with the specified minimum yield strength (SMYS). Strain gages are also useful for providing strain in anomalies such as corrosion or a dent.

Pressure Cycle Fatigue Testing

Over the years the authors have performed hundreds of pressure cycle tests. Often the purpose in testing has been to destructively test a sample via fatigue having known defects or flaws. Another trend that has been frequent as of late is the use of pressure cycling to introduce cumulative damage prior to actually performing a burst test. This is a useful and powerful technique for providing an operator with an understanding about how a pipeline might perform at some future date. This “pre-burst” pressure cycle fatigue steps includes the following steps.

1. Estimate the number of pressure cycles expected in a given period of time (e.g. 20 years) as well as the associated pressure ranges.
2. Use a rainflow counting technique to determine a single equivalent pressure range (details provided in discussion below) using actual pressure data from a compressor or pump station. Both cycle counting (e.g., rain-flow) and a damage rule (e.g., Miner’s Rule1) are required to define a single equivalent pressure range.

A rainflow counting technique is useful for developing a single pressure range based on actual pressure history. Figure 1 provides data from a prior study where the operator provided historical pressure data for a one year period. These data were used as input into a rainflow counting package to generate the histogram shown in Figure 2. From the collected pressure range bins and associated frequencies, a single equivalent pressure range was determined using Miner’s Rule for \( \Delta P = 1,104 \text{ psi} \) (7.6 MPa, which is 72% SMYS). Figure 2 shows results associated with the development of the histogram and the single equivalent pressure range. The random nature of the actual pressure data can be converted into a single equivalent pressure range that can then be applied to the pipe sample during testing. Consider the table provided in Figure 2 a 4th order relationship is assumed between stress and cycles as expressed in the following relation based on Miner’s Rule.

\[
N_{\Delta P} = N_{1,104} \left( \frac{1104 \text{ psi}}{\Delta P} \right)^4
\]  

In this equation \( N \) is the number of respective cycles and \( \Delta P \) is the applied pressure range in units of psi. For each pressure range captured from the rainflow counting exercise (and shown in the histogram in Figure 2) a new equivalent cycle number is generated for the 1,104 psi (7.6 MPa) pressure range. As noted in this table provided in Figure 2, the sum of all resulting cycles generates a single equivalent pressure cycle. Therefore, from the random pressure data presented in Figure 1, a single equivalent cycle number of 69 is generated assuming an alternating pressure of 1,104 psi (7.6 MPa) as presented in the table in Figure 2.

Bend Testing

Bending is always part of offshore pipeline work, whether it is at the installation level or subsea accounting for responses to operating loads such as thermal buckling; however, bending can also be an issue for onshore pipelines when considering the effects of terrain, land movement, earthquakes, and mudslides. In addition to introducing bending loads, tests can simultaneously introduce the effects of internal pressure and axial tension or compression.

---

1. Miner’s Rule is one of the simplest cumulative damage models, popularized by M. A. Miner in 1945. It states that if there are \( k \) different stress levels and the average number of cycles to failure at the \( i \)th stress, \( S_i \), is \( N_i \), then the damage fraction, \( C \), is:

\[
\sum_{i=1}^{k} \frac{N_i}{N} = C
\]

Where \( N_i \) is the number of cycles accumulated at stress \( S_i \), and \( C \) is the fraction of life consumed by exposure to the cycles at the different stress levels. In general, failure occurs when the damage fraction reaches 1.
Because of safety concerns, bending tests often do not involve testing to rupture. Rather, bending loads are applied until a plastic collapse condition is reached and the limit state load is defined (i.e. the point where the pipe can take no more appreciable loading). Strain gages are typically used in bend testing to provide feedback on the level of strain introduced into the test sample and to identify the plastic collapse load. A case study is presented that provides results for a bend test used to quantify the level of reinforcement provided to defective girth welds reinforced with composite materials.

**Simulated Damage Creation**

Although a fair portion of work performed by the authors and their firm have involved testing actual defective pipe materials removed from the field, efforts are also required to simulate damage using laboratory means. Besides the obvious inclusion of applying excessive loads during tests (i.e. pressure, tension, and bending) to introduce failure, the defects most often simulated during testing include corrosion, plain dents, and mechanical damage.

Figure 3 shows the set-up for testing done to generate mechanical damage in 12.75-inch (324 mm) diameter pipe material. To inflict damage a gouge was generated by forcing a back-hoe tooth into the sample that was simultaneously pulled, during which pressure was maintained in the sample at 70% SMYS. Figure 4 shows the geometry for the three back-hoe teeth as well as a photograph of one of the simulated defects.

Whenever simulated data is created, it is important to ensure that the damage imparted to the pipe is representative of actual conditions as much as reasonably possible. This might require the use of numerical modeling using either finite element analysis (FEA) or fracture mechanics. An example is using FEA prior to indenting a test sample to determine the geometry of an indenter needed to achieve a certain dent profile.

**CASE STUDIES**

The best means for demonstrating the effectiveness of IDT as a means for assessing mechanical integrity is providing several case studies. The case studies included in this paper provided details on studies actually conducted for pipeline operators. An important consideration for the information presented herein is that several of these case studies were used to convey to government regulators the soundness of the pipeline in question. In effect these tests became part of integrity management program packages that assisted operators in defending their proposed courses of action.

The presentations that follow for each of the case studies contain the following elements:
1. Purpose of test
2. Type of test
3. Implications of results.

**Destructive Testing Vintage Pipe with Crack-like Features**

As part of their integrity management program (IMP), an operator of a 16-inch diameter propane pipeline identified the presence of features in the seam weld during a high resolution in-line inspection run. Using a combination of fatigue and burst testing, the pressure capacity of pipe material removed from service was determined using three samples. Prior to burst testing, the test samples were pressure cycled 3,100 times at a pressure range of 45 percent SMYS. Considering a moderately aggressive pressure spectrum, this corresponds to approximately 20 years of service for this particular pipeline system.

Of the three burst tests that were performed, the minimum burst pressure that occurred was 2,129 psi, which corresponds to 148 percent of the yield pressure and translates to a hoop stress of 68,128 psi. Figure 5 is a photograph showing the hydrostatic test rupture in Sample #1; note the location of the longitudinal seam weld that occurred outside the failure. Table 1 lists the test pressure results for all three burst samples.

Post-failure metallurgical evaluation showed that no failures occurred in the weld seam and that none of the seam weld features contributed to the pressure failures. Additionally, there was no evidence that corrosion or fatigue contributed to the rupture origins or that failures occurred due to deficiencies in material properties.

The implications for the operator of this propane pipeline associated with the results of this study provided a framework for making future decisions on the operation of this line. Additionally, the consistent test results provided greater confidence in the proposed continued operation of the line. Even though seam weld features were identified by ILI, the test results showed that the magnitudes of burst pressure were acceptable for the continued operation of the pipeline. Furthermore, the pre-burst cycling effort provided the operator with a “snapshot” of what future performance could be expected.

**Reinforcement of Vintage Girth Welds**

Girth welds are an essential part of every transmission pipeline. With much of the current pipeline system in the United States having been installed prior to 1970, concerns exist with some pipeline companies regarding the integrity of vintage girth welds. While it is true that the failure rate in the United States attributed to vintage girth welds (based on information reported to the authorities) has not been widespread, operators recognize that they cannot be complacent as their infrastructure ages and that they should continue to search for alternatives to conventional repair and replacement options that will continue to ensure integrity.

For this reason, a study was conducted to evaluate the use of composite materials in reinforcing girth welds. Co-participants in this study included five composite repair manufacturers that currently market products and systems for reinforcing pipelines with anomalies and defects. Both E-glass and carbon fiber systems were tested in this program, as well as a steel half-shell system. These manufacturers made financial contributions, donated materials, and provided personnel who completed repair installations on their respective test samples.

The program involved the reinforcement of 12.75-inch x 0.188-inch, Grade X42 pipe samples with defective girth welds that did not include a root pass (i.e., simulated lack of penetration weld defects) as shown in Figure 6. Each manufacturer was responsible for repairing three pipe samples that included one tension-to-failure sample, one tension-to-failure sample with a reduced bonding area, and a bending-to-failure sample. Additionally, two unreinforced pipe samples with defective girth welds were tested (i.e., tension-to-failure and bending-to-failure samples) to provide a baseline data set to which results for the reinforced samples could be compared.

Prior to the destructive tension and bending tests, all reinforced samples were subjected to 18,000 pressure cycles ranging from 445 psi to 890 psi (36% SMYS to 72% SMYS). This condition was selected as it approximates a 20-year service life for gas pipelines.
assessments, all five of the composite reinforced systems performed well in the sense that the initial level of distortion in the pipe occurred outside of the reinforcement. These results demonstrate that the stiffness of the reinforced sections are not only greater than the base pipe, but of sufficient magnitude to ensure that wrinkles form outside a composite-reinforced section when subjected to bending loads. Figure 7 includes photographs of the unreinforced bend sample, including a cross-section of the weld after failure. The sample shown in this figure was subjected to increasing bending loads until a failure occurred.

When considering the performance of the composite reinforcing systems, there were some differences in the results for the tension-to-failure samples. The unreinforced tension sample failed at a tension load of 293 kips. Considering the reinforced tension samples with full bonding areas, the reinforced samples had tension-to-failure loads ranging from 433 to 481 kips. The repair using Product C was able to achieve a maximum tension load of 522 kips with failure occurring in the base pipe near a welded boss outside the repair, as shown in Figure 8. Shown in Figure 9 are photographs showing the bend test results for reinforced test sample; note the wrinkle that formed outside of composite reinforcement. A plot of tensile load versus deflection for all five of the tested systems is shown in Figure 10. The results presented in this plot only include loads applied by the load frame; whereas the tension values presented above include the presence of pressure end loads.

The results of this program demonstrated that, when properly designed and installed, composite materials reduce hoop and axial strains in girth welds and increase the limit-state capacities under combinations of pressure, tension, and bending loads. Thus, these systems provide pipeline operators with a reinforcing method to improve the reliability and integrity of pipelines having defective girth welds.

Assessment of Dents Subjected to Cyclic Pressures

Most pipeline operators are required to deal integrity management issues associated with dents. Consequently, a significant body of research has been conducted by the pipeline industry to evaluate the performance of dents to quantify the threat they pose to pipeline operation. With in-line technology advances, especially with regards to high resolution caliper tools, the pipeline industry currently has access to critical information that can be used to quantify dent severity.

As a demonstration of numerical modeling based on ILI technology, a study was conducted to quantify the severity of a dent using full-scale testing methods. The program was sponsored by ROSEN and is part of an larger recently-funded study named the Dent Validation Collaborative Industry Program (DV-CIP) being funded by five pipeline operators and seven repair companies.

In this particular test a 15% deep initial dent (dent depth divided by outside pipe diameter) was installed in a 24-inch x 0.25-inch pipe as shown in Figure 11. Strain gages were installed in the dented region of the pipe and the sample was cycled to failure at a pressure range between 10 and 80% SMYS of the pipe. The sample failed after the application of 39,800 cycles, with a longitudinally-oriented crack being developed in the dented region as shown in Figure 12.

Prior to pressure cycling ROSEN’s high-resolution geometry tool was pulled through the test sample to capture the resulting deformation associated with the dent. A finite element model was constructed with the ILI data and used to calculate a stress concentration factor (SCF) for the dent in question. In the context of this discussion, the SCF was calculated as the maximum principal stress calculated in the dented region divided by the nominal hoop stress in the base pipe. The calculated SCF was then compared to strains measured by the strain gages installed in the dented region of the pipe.

Figure 13 is a contour plot showing stresses in the dented region of the pipe based on the ILI data. The maximum principal stress that was calculated corresponded to an SCF of 3.28. Correspondingly, the SCF based on the strain gage measurements for the full-scale test effort was 3.16. The difference between these two values is less than 5 percent.

This particular case study is similar to other studies that have been performed for numerous pipeline operators in evaluating the effects of dents on pipeline integrity. With advances in in-line inspection technology, studies such as the one presented here are important for improving confidence of the pipeline industry in the reliability of both the ILI technology and methods for quantifying pipeline damage.

ENGINEERING BASED INTEGRITY MANAGEMENT

The prior discussion provides a good example of how analysis and testing can be integrated to provide improved confidence in analysis results. The greatest contribution when considering numerical modeling techniques is the development of grading tools for quantitatively assessing pipeline damage. At the present time there are several areas of interest for pipeline operators where the development of these types of tools will be of significant benefit. Figure 14 is a flow chart that shows the central elements involved in developing an Engineering-Based Integrity Management Program (EB-IMP). As noted, analysis and testing methods work hand-in-hand to facilitate the development of tools that can be used by operators to evaluate the level of criticality associated with a particular defect or anomaly.

Based on discussion with pipeline operators, there are several areas of concern that pose threats to the integrity of pipeline systems. A grading tool could be developed for each of the following defect types in association with an EB-IMP.

- Plain dents
- Dent in girth and seam welds
- Rock dents
- Vintage girth welds
- Seam welds (with detected crack-like flaws)
- Wrinkle bends
- Effects of composite materials in increasing the burst capacity and fatigue strength of any of the above

To ensure the validity of any tool that is developed, both analysis and testing are required. At the outset of any project whose intent is to develop a grading tool, it is essential that planning be conducted to maximize information gained from collected results. Of particular note is the fact that significant savings can be realized in conducting specific tests to validate numerical models, as opposed to conducting an extensive array of full-scale tests. Proper planning increases the likelihood that a useful grading tool will be developed.
CONCLUSIONS

This paper has provided details on how IDT full-scale testing methods can be used by pipeline operators to gain understanding about how pipelines respond to loading conditions that can lead to failure. By understanding how pipelines fail, operators are better-positioned to identify/understand which defects are of most concern and what margins of safety actually exist in operating a pipeline. While numerical modeling is useful for understanding the general response of pipe materials, it is unwise to solely rely on guidance based on analytical findings when the opportunity for full-scale testing is an option. As has been demonstrated herein, when tests are properly coordinated and planned, they can be used to validate numerical models and improve the overall confidence in grading tools.

In addition to validating numerical models, testing provides a powerful resource for assisting operators in predicting the future performance of pipelines. The most appropriate example based on information presented in this paper includes conducting full-scale burst tests on pipe samples that have been previously pressure cycled to simulate future service conditions.

It is hoped that the information in this paper will encourage and foster additional discussions among those in the pipeline industry. Because of the critical role that pipelines have in terms of the worldwide energy infrastructure, significant benefits are derived in conducting tests as part of an engineering-based integrity management program.

REFERENCES


Figure 1 – Pressure history from actual liquid pipeline
Figure 2 – Development of the histogram and single equivalent pressure range

<table>
<thead>
<tr>
<th>Pressure Range Bin (psi)</th>
<th>Frequency</th>
<th>1140 psi Pressure Equivalent</th>
<th>Equivalent Cycle Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2010</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>355</td>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>230</td>
<td>0.005</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>73</td>
<td>0.037</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>60</td>
<td>0.077</td>
<td>5</td>
</tr>
<tr>
<td>600</td>
<td>24</td>
<td>0.142</td>
<td>3</td>
</tr>
<tr>
<td>800</td>
<td>27</td>
<td>0.243</td>
<td>7</td>
</tr>
<tr>
<td>900</td>
<td>10</td>
<td>0.388</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>9</td>
<td>0.592</td>
<td>5</td>
</tr>
<tr>
<td>1100</td>
<td>7</td>
<td>0.867</td>
<td>6</td>
</tr>
<tr>
<td>1200</td>
<td>8</td>
<td>1.228</td>
<td>10</td>
</tr>
<tr>
<td>1300</td>
<td>9</td>
<td>1.691</td>
<td>15</td>
</tr>
<tr>
<td>1400</td>
<td>1</td>
<td>2.275</td>
<td>2</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>2.997</td>
<td>3</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
<td>3.680</td>
<td>0</td>
</tr>
<tr>
<td>1700</td>
<td>0</td>
<td>4.484</td>
<td>0</td>
</tr>
<tr>
<td>More</td>
<td>0</td>
<td>TOTAL</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual TOTAL</td>
<td>69</td>
</tr>
</tbody>
</table>

Figure 3 – Schematic of set-up used to generate mechanical damage in pipe samples
Figure 4 – Geometry of indenter teeth and resulting damage
(Drawings at left show indenter geometries and photo at right shows the resulting damage inflicted to the pipe)

Figure 5 - Hydrostatic test rupture in Sample #1
The location of the longitudinal seam weld is also shown.
Figure 6 – Cross-section of simulated vintage girth weld with lack of penetration

Figure 7 – Bend test results for unreinforced test sample
Figure 8 – Photograph of tension failure in Product C test sample

Figure 9 – Bend test results for reinforced test sample
(note wrinkle that formed outside of composite reinforcement)
Figure 10 – Load versus deflection for vintage girth weld samples
(Results presented above do not include pressure end loads; actual failure loads are greater)
Figure 11 – Installation of dent in 24-inch diameter pipe

Figure 12 – Pressure cycle fatigue failure in dented 24-inch diameter pipe
Figure 13 – Contour plot showing stresses in dent based on ILI data

Figure 14 – Flow chart for the Five Step Engineering-Based Integrity Management Program

Table 1 – Test pressure results for the three burst samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Maximum Pressure</th>
<th>Percent SMYS ((P_{\text{max}} / P_{\text{yield}}))</th>
<th>Failure Stress ((P_{\text{max}R/t}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample #1</td>
<td>2,164 psi</td>
<td>150.4%</td>
<td>69,248 psi</td>
</tr>
<tr>
<td>Sample #2</td>
<td>2,379 psi</td>
<td>165.4%</td>
<td>76,128 psi</td>
</tr>
<tr>
<td>Sample #3</td>
<td>2,129 psi</td>
<td>148.1%</td>
<td>68,128 psi</td>
</tr>
</tbody>
</table>